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INVARIANT SOLUTIONS OF RANK 1 OF THE EQUATIONS
OF PLANE MOTION OF A VISCOUS HEAT-CONDUCTING PERFECT GAS

V. V. Bublik UDC 517.95+519.46

A system of equations of plane motion of a viscous heat-conducting perfect gas is considered:

plue + wttg +vuy) = ~pe + 220z = vy))s + (g + v2))y (1
p(ve + uvz + vvy) = —py + (u(uy + vz))z + %(l‘(%y = Uz))y; (2)
pr+ (up)z + (vp)y = 0; (3)

Pt + upz + vpy + Yp(uz + vy)
=1 1—2 1 k"(("(%)), + (u(g)y)y) +(r— 1)#(%(1@ + vy — uzvy) + (vz + uy)2>- (4)

Here u and v are the coordinates of the velocity vector, p is the density, p is the pressure, u = (p/p)¥ is
the viscosity coeflicient, kou is the heat-conductivity coefficient, 4 is the ratio of specific heats, and R is
Boltzmann’s constant.

The goal of this work is to construct all invariant solutions of rank 1 for system (1)-(4) [1].

As is shown in [2], system (1)—(4) admits the Lie algebra Lg with the basis

Xy =0s, Xz = 0y, X3 = t0; + Ou, X4 =ty + 0y,
Xs = yOr — 20y + vOy — uly, Xs = 04,
X7 =t0 + 20; + yOy — p0p — pTp,
Xg = 205 + yOy + udy + v0y + 2(w — 1)pd, + 2wpd,.

Table 1 is the commutator table for the operators of the Lie algebra Lg. Here and below, admissible
operators are represented by their numbers.

Table 2 gives actions of the internal automorphisms of the Lie algebra Lg on the coordinates of the
vector X = z*X;. To these we add the discrete automorphism E;, which corresponds to the reversal of the
direction of the z axis. The actions of the automorphisms A; and Az are combined into the action of the
automorphism T', and A3 and A4 are combined into the action of the automorphism I'. The group parameter
of the automorphism A; (: = 1,...,8) is denoted by a;. Also, the following notation is used: a; = (a1, a3),
az = (a3, as4), o7 = exp{ar}, and ag = exp{as},

S = c¢.)sa5 sin as ’ A= 0 -1 .
—sinas cosas 1 0
Table 3 gives the normalized optimal system of subalgebras of the Lie algebra Lg [3]. The first integer
in the subalgebra number denotes its dimension, and the second denotes its number among the subalgebras

of the given dimension, IV is the basis of the subalgebra, and NorN is its normalizer. The coefficients « and
B take any real value. The coefficients § and £ do not take values of 0 and —1, respectively. The coeflicient {
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TABLE 1

1 2 3 4 5 6 7 8

ilo o o o -2 11

2 0 0 0 0 1 0 2 2

3 0 0 0 0 -4 - 0 3

4 0 0 0 0 3 -2 0 4

5 2 -1 4 -3 0 0 0

6 0 0 1 2 0 6 0

71 -1 =2 0 0 0 -6 0 0

8§81 -1 -2 -3 -4 0 0 0 0

TABLE 2

Automorphism p = (2, 2?) p2 = (23,2%) z5 z8 z7 | 8
T p1 + oy A5 + oy (27, 28) P2 z8 z6 z7 | z8
r p — azz® p2 + a2Az% + apz® | z° z6 7 | 28
As ns p2S z5 z8 z7 | z8
As P+ asp2 P2 25 | 28+ aez” |27 | 28
Aq orpy P2 z5 aqzs z7 | 28
Ag agpy " agp2 z5 z8 z7 | 28
E, (-=z1,2%) (—z3,z%) -z z8 z7 | 28

do not take values of 0 and —1, and the coeflicient 1 takes values of +1 or —1. Self-normalized subalgebras
are denoted by the equality sign. The superscript indicates that in the given subalgebra the parameter value
is equal to the superscript (for example, 7.2° designates the subalgebra 7.2 with « = 0).

Invariant solutions of rank 1 are constructed on the basis of subalgebras of dimension 2. Among these,
subalgebras 2.15 and 2.30 do not satisfy the necessary conditions of existence of an invariant solution. For
the remaining subalgebras, invariant solutions are given below. For each submodel, the subalgebra number
on whose basis it is constructed, invariants of the corresponding subgroup and the form of the solution are
given. To save space, the quote system is not given here; this can be readily obtained by substituting the form
of solution into system (1)—(4). If partial or full integrations of the quote system are possible, its result is
given. If, among the operators defining the subalgebra there is the operator Xi, system (1)—(4) is conveniently
written in polar rather than Cartesian coordinates. The Cartesian and polar coordinates are related by

z=rcosp, y=rsing, u=Ucosp—Vsing, v=Using — Vcose.
Then, the operators in the polar coordinates take the form
Xs=-0,, X1=1t0+r0 —p0,—plp, Xg=10+Udy+Voy+2(w— 1)pd, + 2wpd,.

The constants of integration are denoted by c1, po, and po.
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TABLE 3

TABLE 3 (Continued)

Subalgebra N NotN
number

7.1 1,2,3,4,5 + a8,6,7 + 38 Ls
7.2 1,2,3,4,5+a7,6,8 Ls
73 1,2,3,4,5,7.8 =73
74 1,2,3,4,6,7,8 Ls
6.1 1,2,3,4,5 + a7 + (38,6 Ls
6.2 1,2,3,4,5+a8,7+ 8 7.3
6.3 1,2,3,4,5 + 67,8 7.3
6.4 1,2,3,4,5 4+ 8,6 + n8 7.2°
6.5 1,2,3,4,6,7+a8 Ls
6.6 1,2,3,4,5+6,8 7.2°
6.7 1,2,3,4,5,8 Ls
6.8 1,2,5,6,7,8 =6.8
6.9 1,2,3,6,7,8 =6.9
6.10 1,2,3,4,7,8 =6.10
6.11 1,2,3,4,6,8 Ls
5.1 1,2,3,4,5+ 67 + a8 7.3
5.2 1,2,5+ a8,6,7 + 38 6.8
5.3 1,2,3,4,5 + a8 Ls
5.4 1,2,5+a7,6,8 6.8
5.5 1,2,3,4,5+6 +a8 7.2°
5.6 1,2,3,6,7+ a8 7.4
5.7 1,2,3,4,7+a8 7.3
5.8 3,4,5,7,8 =5.8
5.9 1,2,5,7,8 =5.9
5.10 1,3,6,7,8 =5.10
5.11 1,3,4,7,8 6.10
5.12 1,2,6,7,8 6.7
5.13 1,2,3,7,8 =5.13
5.14 1,2,3,446,7+8 =5.14
5.15 1,2,3,6,4+7 6.5°
5.16 1,2,3,6,8 6.9
5.17 1,2,3,4,8 Ls
5.18 1,2,3,4,6 + 98 7.2°
5.19 1,2,3,4,6 Ls
4.1 1,2,5+ a7+ (8,6 6.8
4.2 3,4,5+a8,7+ 8 5.8
4.3 1,2,5+a8,7 + A8 5.9
4.4 3,4,5+a7,8 5.8
45 1,2,5+aT,8 5.9
4.6 1,3,6,7 + a8 5.10
4.7 1,2,6,7 4+ a8 6.8
4.8 1,3,4,7 4+ a8 =48
4.9 1,2,3,7+ o8 5.13
4.10 1,2,5+ a8,6 4+ 18 5.4°
4.11 1,2,5+6,8 5.4°
4.12 5,6,7,8 =4.12
4.13 1,6,7,8 =4.13
4.14 3,4,7,8 5.8
4.15 14 02,3,7,8 =4.15
4.16 2,3,7,8 =4.16
4.17 1,2,7,8 5.9
4.18 1,3,6,2+7—38 5.67!

Subalgebra N NorN
number

4.19 1,3,4,24+7-8 577!
4.20 1,3,4 +6,7+8 =4.20
4.21 1,2,34+6,7+48 =4.21
422 1,2,3+17,6 6.5°
4.23 1,2,3,4+47 5.7
4.24 1,2,3,6 + 98 6.9
4.25 1,3,6,8 5.10
4.26 1,2,6,8 6.8
4.27 1,3,4,8 5.11
4.28 1,2,3,8 6.9
4.29 1,2,3,4+6 6.11
4.30 1,2,3,6 7.4
4.31 1,2,3,4 Ls
3.1 3,4,5+a7+ 38 5.8
3.2 1,2,5+ 67 + a8 5.9
33 5+ a8,6,7+ A8 4.12
3.4 1,2,5+ a8 6.8
3.5 5+a7,6,8 4.12
3.6 1,2,5+6 + a8 5.4°
3.7 5,7,8 =37
3.8 1,6,7 + 68 4.13
3.9 3,4,7 + €8 5.8
3.10 14+ a2,3,7+(8 4.15
3.11 2,3,7+(8 4.16
3.12 1,2,7+68 7.3
3.13 6,7,8 4.12
3.14 3,7,8 =3.14
3.15 1,7,8 =3.15
3.16 1,6,2+7~8 =3.16
3.17 3,4,1+7~-8 6.10
3.18 14+a2,3,2+7-8| 5.13
3.19 2,3,1+7-8 5.13
3.20 1,3+a4+6,7+8 | =3.20
3.21 1,446,748 =3.21
3.22 3,4,7-8 7.3
3.23 14+02,3,7-8 5.13
3.24 2,3,7-8 5.13
3.25 1,6,3+7 4.6°
3.26 1,4,3 47 4.8°
3.27 1,2,347 5.7°
3.28 1,34+ a4,4+7 4.8°
3.29 1,3+ 4,7 5.11
3.30 1,4,7 5.11
3.31 1,2,7 5.9
3.32 1,6,7 5.10
3.33 1,3,6 +n8 4.25
3.34 1,2,6 + 18 5.4°
3.35 1,6,8 4.13
3.36 3,4,8 5.8
3.37 1+ 02,3,8 4.15
3.38 2,3,8 4.16
3.39 1,2,8 6.8
3.40 1,3,4+6 5.14
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TABLE 3 (Final)

Subalgebra

N NorN
number
3.41 1,2,3+6 6.5!
3.42 1,3,6 6.9
3.43 1,2,6 Ls
3.44 1,3,4 6.10
3.45 1,2,3 7.4
2.1 6,5+ a7+ 48 4.12
2.2 S+a7,7+08 3.7
2.3 5+ 67,8 3.7
2.4 5+ a8,6+n8 3.5°
2.5 6,7+ ¢8 4.12
2.6 3,7+ 68 3.14
2.7 1,7+ 68 3.15
2.8 5+6,8 3.5°
2.9 5,8 4.12
2.10 7.8 3.7
2.11 6,1+7—38 5.12
2.12 3,2+7-8 5.13
2.13 1,2+7-8 4.17
2.14 3, 1+a2+7-8| 513
2.15 6,7—8 5.12
2.16 3,447 3.9°
2.17 1,447 4.8°
2.18 1,34+ad+7 4.8°
2.19 1,3+6 5.6!
2.20 3,7 4.14
2.21 1,7 5.11
2.22 1,6 + 18 4.13
2.23 6,8 412
2.24 3,8 3.14
2.25 1,8 413
2.26 La3+4+46 5.14
2.27 1,6 6.9
2.28 3,4 7.3
2.29 1462,3 6.10
2.30 1,3 7.4
2.31 2,3 6.10
2.32 1,2 Ls
1.1 54587+ a8 3.7
1.2 5+a8 4.12
1.3 5+46+a8 3.5°
1.4 7T+ 68 3.7
1.5 147-8 3.12°!
1.6 3+7 3.9°
1.7 7 5.8
1.8 6 +n8 3.5°
1.9 8 4.12
1.10 3+6 3.41
1.11 6 6.8
1.12 3 6.10
1.13 1 74

Submodel 2.1. The invariants of the group arc

rexp{(a + PB)p}, Uexp{Bp}, Vexp{pp}).
pexp {(28(w = 1) — a)p}, pexp {(26w — a)p}. The
solution is of the form U = Uj(é)exp {8y}, V =
Vi(¢)exp {=Bp}, p = pi(&) exp {{a = 28(w - 1))p}.
P =pi(§)exp {(a = 2Bw)p}, £ = rexp {(a + A)p}.

Submodel 2.2. The invariants of the group are
rt=P=lexp {—afy}, Utfr, Vtfr, pri-2wi=1+2
pro2tt+2 The solution is of the form U =
UW(Qr/t, V = W(&r/t, p = p1(§r?2tt=2, p =
puE)rP 7172, ¢ = rt=F~ 1 exp{—afp}.

Submodel 2.3. The invariants of the group are
Sp+1Int, Ut/r, Vt[r, pri=20t=1420 5r=2wil+2u T,
solution is of the form U = U (é)r/t, V = Vi(&)r/t.
p=p(Or* T2, p = p(Or¥eTITM, £ = by +
Int.

Submodel 2.4. The invariants of the group are
ap — nt + Inr, Ulr, V/r, pr¥~% pr—2
The solution is of the form pr=2¢, U = U(£)r.
V = Vl(é)r’ P = pl(é')r2u—2’ p = Pl(f)"gw, § =
ap —nt+lInr.

Submodel 2.5. The invariants of the group are
y/z, uz~c/(e+D) vg—e/(e+1) pr(1-2e(w=1))/(e+1)
pz(1=2¢w)/(e+1)  The solution is of the form
u = ul(e)zs/(z-i-l)’ v = vl(f)z‘/(""l), p =
pr(€)zGew=D=1/(e+1), p = p;(g)aPew-D/e+D), ¢ =
y/z.

Submodel 2.6. The invariants of the group are
yt—s—l"(ut_z)t—s—l, Ut—s, pt1—26(u—l)’ ptl-25w. The
solution is of the form u = u;(£)t® + z/t, v = v (€)1,
p= pl(ﬁ)tﬁ(w—l)—l, p=p (£)t25w-1, £ = yt_a"l.

Submodel 2.7. The invariants of the group are
yt_‘s“l, ut™% vtd, pt1'25(“"‘1), pt1=2%¢ The solution
is of the form u = uw1(&)t}, v = v(E)t5, p =
pr(E)tBW=D=1 b = py (€)t20w=1 € = yt=b-1,

Submodel 2.8. The invariants of the group are
t+ ¢, Ulr, V/r, pr*=2 pr=20 The solution is of
the form U = Ui(&)r, V = Vi(é)r, p = p1(€)r?2,
p=p(r¥, E=t+o.

Submodel 2.9. The invariants of the group are
t, Ulr, V/r, pr®=2 pr=2¢ The solution is of the
form U = Uy(t)r, V = Vi(t)r, p = p;1()r*~2, p =
pl(t)f‘zw‘

Submodel 2.10. The invariants of the group are
y/z, ut/z, vtfz, pt?~1z2-2 p2wtly-2w  The
solution is of the form u = u;(&)z/t, v = ni(¢)z/t,
p= pl(ﬁ)t1“2“x2‘2“’, p= pl(ﬁ)t""2“’z2“’, € — y/:z:.

Submodel2.11. The invariants of the group are y, uexp{z}, vexp{z}, pexp{(2w—1)z}, pexp{(2w+1)z}.
The solution is of the form y, uexp{z}, vexp{z}, pexp{(2w — 1)z}, pexp{(2w + 1)z}.
Submodel 2.12. The invariants of the group are y — Int, ut — z, vt, pt>*~!, pt?+!. The solution is of

the form u = u1(€)/t + z/t, v = vi(E)/t, p = P}, p=p1(E)t7 7%, £ =y — Int.
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Submodel 2.13. The invariants of the group are y — Int, ut, vt, pt2 =1 pt2@+l The solution is of the
form u = u1(€)/t, v = vi(E)/t, p= p(E)t"" 2, p=p ()", £ =y — Int.

Submodel 2.14. The invariants of the group are y — alnt, ut — r +Int, vt, pt?~1 pt***+1 The solution
is of the form u = (ui(€) + z = Int)/t, v = vi(€)/t, p= ()2, p=pi ()72, € =y —alnt.

Submodel 2.16. The invariants of the group are y/t —Int, u — z/t, v — Int, pt, pt. The solution is ol
the form u = u)(§) + z/t, v = v1(€) +In¢t, p = p1(€)/t, p=p(€)/t, E = y/t — Int.

Submodel 2.17. The invariants of the group are y/t —Int, u, v —Int, pt, pt. The solution is of the form
u=u(€), v =vi(€) +Int, p = pr(E)/t, p = PO/t € = u/t — Int.

Submodel 2.18. The invariants of the group are y/t — alnt, u —Int, v — alnt, pt, pt. The solution is
of the form u = u}(€) + Int, v = vy (€) + alnt, p = p1(€)/t, p=p1(€)/t, E = y/t — alnt.

Submodel 2.19. The invariants of the group are y, u—t, v, p, p. The solution is of the form u = u1(y) +¢.
v=u(y), p = p(y), p = p(y)-

Submodel 2.20. The invariants of the group are y/¢t, u — z/t, v, pt, pt. The solution is of the form
u=wui(§) +z/t, v =0(¢), p = m(E)/t, p = P1(§)/t, E = y/t.

Submodel 2.21. The invariants of the group are y/t, u, v, pt, pt. The solution is of the form u = u(¢).
v= v(é)a p= Pl(g)/t» p= Pl(é)/t, € = y/t

Submodel 2.22. The invariants of the group are yexp {—nt}, uexp {—nt}, vexp {—nt}, pexp {2(1 -
w)nt}, pexp {—2wnt}. The solution is of the form u = u;(€)exp {nt}, v = vi(£) exp {nt}, p = p1(€) exp {2(w~
Lnt}, p = p1(§) exp {2wnt}, £ = yexp {—nt}.

Submodel 2.23. The invariants of the group are y/z, u/z, v/z, pz?~
form u = u1(€)z, v = vi(§)z, p = p1(€)z27%, p = p1(€)z™, £ = y/z.

Submodel 2.24. The invariants of the group are t, (tu — z)/y, v/y, py?~2, py~2“. The solution is of
the form u = (u1(t)y + z)/t, v = v1(t)y, p = ()Y~ % p = p1(t)y™.

Submodel 2.25. The invariants of the group are t, u/y, v/y, py*~% py=29 The solution is of the form
u=u(t)y, v ="i(t)y, p = (W% p = (W,

Submodel 2.26. The invariants of the group are 2y — t2, u — at, v — t, p, p. The solution is of the form
u=u(f) +at,v=0v1(§) +¢, p=p(£), p = p(£), =2y - t2.

Submodel 2.27. The invariants of the group are y, u, v, p, p. The solution is of the form u = u(y),
v =v(y), p = p(y), p = p(y)-

Integration of the quote system (with accuracy to the transformations defined by the operators X3 and
X7) leads to the following two cases:

(1) The solution is restored from the system

2w pr=2 The solution is of the

v=1/p, pu'=u, 4pp'/3=(cp—pp—1)p,

' o 1—1 IANY 7 2 jqy.
vp +ypv = —p—ko{ p + (7 = Dufu” + 407 /3);

(2) The solution is restored from the system

v=0, p=ps, u=p ¢ =Rup’?/(kopo).

Submodel 2.28. The invariants of the group are t, tu — z, tv — y, p, p. The solution is of the form

u = (ul(t) + ‘t)/t7 v= (vl(t) + y)/ta p= p(t), p= p(t)
Integration of the quote system (with accuracy to the transformations defined by the operators X and
X3) leads to the solution

wu=gzft, v=y/t, p=pftt, P +2yp/t=4(y—1)p /3.
Submodel 2.29. The invariants of the group are t, §(tu — z) + y, v, p, p. The solution 1s of the form

u = ((u(t) = y)/6 + z)/t, v = v(t), p = p(t), p = p(t).
Integration of the quote system (with accuracy to the transformations defined by the operators X3 and
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X4) leads to the solution

- < =0, =
5t v p
Submodel 2.31. The invariants of the group are ¢, tu — z, v, p, p. The solution is of the form u =

(ui(t) +2)/t, v = v(t), p = p(t), p = ().
Integration of the quote system (with accuracy to the transformations defined by the operators X, and

X4) leads to the solution
u = z/t, v =0, p = po/t, P +p/t =4(y - Dpg“t*"2p¥/3.
Submodel 2.32. The invariants of the group are ¢, u, v, p, p. The solution is of the form u = u(t).

v=v(t), p=p(t), p = p(t).
Integration of the quote system (with accuracy to the transformations defined by the operators X3 and

X4) leads to the state of rest:

LY po vp _ (r = D(6*/3 + 1)
Tt t’ t '

!
pP+—= 5212

u =0, v=0, P = po, P = Ppo-
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